The Value of Privacy: Evidence from Online Borrowers

Huan Tang

London School of Economics

Privacy concerns matter for FinTech

FinTech is growing fast

- ▶ Global VC investment in FinTech 2018: \$112 billion
- \checkmark Global transaction volume 2019: \$5.5 trillion

Global FinTech Transaction Volume (\$billion)

Privacy concerns matter for FinTech

FinTech is growing fast

- Global VC investment in FinTech 2018: \$112 billion
- ▶ Global transaction volume 2019: \$5.5 trillion

• Data is crucial for FinTech, e.g.,

- ${\scriptstyle \bullet}\,$ Credit allocation: Kabbage (valued at \$1.2bn) uses social media patterns
- > Data sales: Credit Karma (\$4bn) generates revenue from customer referrals

• But data is not "free"

- Individuals may be reluctant to share private data
- Firm revenue is constrained by privacy concerns

Q: How big are those constraints for FinTech?

A: Value of privacy

Privacy concerns matter for FinTech

• FinTech is growing fast

- Global VC investment in FinTech 2018: \$112 billion
- \checkmark Global transaction volume 2019: \$5.5 trillion

• Data is crucial for FinTech, e.g.,

- ${\scriptstyle \bullet}\,$ Credit allocation: Kabbage (valued at \$1.2bn) uses social media patterns
- > Data sales: Credit Karma (\$4bn) generates revenue from customer referrals

• But data is not "free"

- Individuals may be reluctant to share private data
- Firm revenue is constrained by privacy concerns

Privacy paradox

- ${\scriptstyle \bullet}\,$ People keep relinquishing personal data, e.g., Facebook and Google
- ${\scriptstyle \bullet}\,$ Evidence from lab experiments suggests small/zero value of privacy

Research question

Do people value privacy? How much? Implications for FinTech firms?

• Empirical challenge:

Measurement of demand for/willingness to pay for privacy

• Empirical challenge:

- Measurement of demand for/willingness to pay for privacy
- Why online lending in China?
 - Borrowers face a tradeoff: privacy vs. credit access
 - No credit bureau
 - Borrowers underserved by banks
 - ${\scriptstyle \star}$ \$218bn market size, >50% global market share

• Empirical challenge:

- Measurement of demand for/willingness to pay for privacy
- Why online lending in China?
 - Borrowers face a tradeoff: privacy vs. credit access
 - No credit bureau
 - Borrowers underserved by banks
 - ${\scriptstyle \bullet}~$ \$218bn market size, >50% global market share
- Large-scale field experiments (315,785 participants)
 - Vary disclosure requirements and loan terms

• Empirical challenge:

- Measurement of demand for/willingness to pay for privacy
- Why online lending in China?
 - Borrowers face a tradeoff: privacy vs. credit access
 - No credit bureau
 - Borrowers underserved by banks
 - ${\scriptstyle \bullet}~$ \$218bn market size, >50% global market share
- Large-scale field experiments (315,785 participants)
 - Vary disclosure requirements and loan terms

• A structural model

- Value of privacy
- Borrower welfare
- Platform profit

Key findings

• Social network ID and employer contact valued at:

- \cdot 230 RMB (\$33) > half-day salary
- $\sim 8\%$ of the value of a foregone loan

Key findings

- Social network ID and employer contact valued at:
 - \sim 230 RMB (\$33) > half-day salary
 - $\sim 8\%$ of the value of a foregone loan
- Possible mechanisms

 - Exertion \times
 - Intrinsic preferences for privacy \checkmark

Key findings

- Social network ID and employer contact valued at:
 - ${\scriptstyle \star}$ 230 RMB (\$33) > half-day salary
 - ${\scriptstyle \bullet}~8\%$ of the value of a foregone loan
- Possible mechanisms

 - Exertion \times
 - Intrinsic preferences for privacy \checkmark
- Structural model: cost of data collection
 - Borrower welfare $\downarrow 13\%$
 - Platform expected revenue per applicant $\downarrow 10\%$

Borrower Decision Process

• A typical loan: 3,770 RMB (\$540), amortizing, 12 months, 11% interest rate, 29% fee, 15% delinquency rate

Borrower Decision Process

• A typical loan: 3,770 RMB (\$540), amortizing, 12 months, 11% interest rate, 29% fee, 15% delinquency rate

Borrower Decision Process

• A typical loan: 3,770 RMB (\$540), amortizing, 12 months, 11% interest rate, 29% fee, 15% delinquency rate

Introduction	Reduced-form Analysis	Model and Estimation	Platform Profit
0000	0000000	000000	0000

Do applicants value privacy?

the disclosure RCT

The disclosure RCT: set-up

- ▶ 270,388 first-time applicants
- 4 treatments:
 - social network ID (QQ ID \simeq Whatsapp + email) "no QQ"
 - marital status
 - employer contact (landline phone number)
 - all three items

"no landline"

"no marriage"

"delete all"

Reduced-form Analysis

Model and Estimation

Quality of randomization

Treatment effects of disclosure requirements

• Applicants are reluctant to disclose: QQ & landline

Treatment effects of disclosure requirements

▶ Applicants are reluctant to disclose: QQ & landline

Completion%

Treatment effects of disclosure requirements

▶ Applicants are reluctant to disclose: QQ & landline

270,388 first-time applicants

Completion%

Treatment effects of disclosure requirements

• Applicants are reluctant to disclose: QQ & landline

270,388 first-time applicants

What explains completion rates?

- An incentive to hide negative information X (rable
 - info. used in pricing
 - ▶ info. used in debt collection
- ► Exertion × table
- Difficulty in recollecting information X Table
- An intrinsic preference for privacy \checkmark (table
 - *Female* and *old* attach higher value to privacy
 - ${\scriptstyle \bullet}\,$ No heterogeneity across income and education
 - Goldfarb and Tucker (2012), Prince and Wallsten (2020)

Introduction	Reduced-form Analysis	Model and Estimation	Platform Profit
0000	000000000	000000	0000

What is the monetary value of privacy?

the loan RCT

The loan RCT: set-up

- 46,170 borrowers who have completed application questionnaire
- Two treatments:

- loan size $\times 2$
- fee reduction $(1/2 \text{ fee} \approx \$128)$

	46,170 applicants	take-up rate
$\operatorname{control}$	regular loan	57.6%
treatment 1	$ loan size \times 2 $	+6.5%
treatment 2	$ \text{loan size} \times 2 + \text{fee reduct} $	ion (\$128) + 11.9%

Back-of-the-Envelope

• Loan demand = disclosure \times take-up

disclosure requirement fee reduction

• QQ and landline = $128 \times \frac{1.28}{5.44} = 30$

 Δ demand% [t]

	disclosure	
remove $QQ + landline$	1.28	[4.91]
	take-	up
fee reduction $(\$128)$	5.44	[6.84]

Why A Structural Approach

- 1. Potential selection on sensitivity to loan price:
 - disclosing applicants \neq exiting applicants
- 2. No insights on borrower welfare or platform profit
 - Need a welfare measure
 - Need a model for firm profit

Introduction	Reduced-form Analysis	Model and Estimation	Platform Profit
0000	00000000	000000	0000

A Structural Model for Privacy Demand

Introduction	
0000	

Reduced-form Analysis

Model and Estimation $\bullet \circ \circ \circ \circ \circ \circ$

Borrower Decision Process

Note: Individual make *Disclosure* decision before observing loan terms

Linking the model to the data

Individuals' choices are given by:

$$\begin{aligned} \mathbf{D1} &= \mathbbm{I}\{X'\gamma_{\mathcal{X}} - \theta_{1,qq}\mathbbm{1}_{qq} - \theta_{1,marr}\mathbbm{1}_{marr} + \gamma_{1,\mathcal{L}}E_L - \gamma_{1,\mathcal{R}}E_R + \varepsilon^{D1} \ge 0\} \\ \mathbf{D2} &= \mathbbm{I}\{X'\gamma_{\mathcal{X}} - \theta_{2,qq}\mathbbm{1}_{qq} - \theta_{2,marr}\mathbbm{1}_{marr} - \theta_{2,ll}\mathbbm{1}_{ll} + \gamma_{2,\mathcal{L}}E_L - \gamma_{2,\mathcal{R}}E_R + \varepsilon^{D2} \ge 0\} \\ \mathbf{T} &= \mathbbm{I}\{X'\beta_{\mathcal{X}} + \beta_{\mathcal{L}}L_i - \beta_{\mathcal{R}}R_i + \sum \beta_q\mathbbm{1}_q + \varepsilon^T \ge 0\} \\ \mathbf{F} &= \mathbbm{I}\{X'\alpha_{\mathcal{X}} + \alpha_{\mathcal{R}}R_i + \sum \alpha_q\mathbbm{1}_q + \varepsilon^F \ge 0\} \end{aligned}$$

- Key coefficients:
 - 1. Value of privacy: $\frac{\theta_{1,qq}}{\gamma_{1,\mathcal{L}}}, \frac{\theta_{1,marr}}{\gamma_{1,\mathcal{L}}}, \frac{\theta_{2,ll}}{\gamma_{2,\mathcal{L}}}$
 - 2. Selection:
 - Unobservable: $\varepsilon_i^D, \varepsilon_i^T, \varepsilon_i^F$

Introduction	Reduced-form Analysis	Model and Estimation	Platform Profit
0000	00000000	00000	0000

Estimation Results

Demand Estimates

- ▶ Requiring QQ and landline *decreases* disclosure probability
- \blacktriangleright (Expected) larger loans and lower fees *increase* disclosure probability

	D - page 1	t	D - page 2	${ m t}$	
QQ marriage landline	-0.023 -0.002 -	(-14.20) (-1.03)	0.016 0.003 -0.007	$(6.33) \\ (1.46) \\ (-3.23)$	
$\begin{array}{c} \overline{\text{loan}} \ (\overline{000s}) \\ \text{repayment} \ (000s) \end{array}$	0.203 -0.139	(16.03) (-14.53)	0.083 -0.054	$(9.01) \\ (-7.63)$	-

$$\mathbf{QQ} : \frac{0.023}{0.203} \times 1000 = 145 \text{ RMB} = \$21 \\ \mathbf{landline} : \frac{0.007}{0.083} \times 1000 = 85 \text{ RMB} = \$12 \end{cases} > \mathbf{half-day \ salary}$$

Introduction	Reduced-form Analysis	Model and Estimation	Platform Profit
0000	00000000	000000	0000

Value of loans

- Average present value of a loan: $\hat{V}(loan) := L \hat{\delta}R = \$420^{\text{ a}}$
- QQ + landline: 33/\$420 = 7.8%

^aEstimated annual discount factor $\hat{\delta} = 0.44$: borrowers are liquidity constrained

Borrowers

Borrower welfare

- Utility in monetary terms: $V_T/\hat{\gamma}_L$
- Avg. utility of successful borrowers \uparrow 7.4% intensive margin
- Avg. utility of all applicants \uparrow 13.4% intensive + extensive margins

Applicants

Introduction 0000	Reduced-form Analysis 000000000	Model and Estimation 000000	Platform Profit $\bullet \circ \circ \circ$

Platform Profit

Implications for platform profit

- ▶ Data is not "free"
 - Appropriate data elicitation incentive, or
 - Lower loan demand
- Platform profit depends on data collection policy:
 - Step 1: predict demand and repayment using demand estimates \checkmark
 - **Step 2**: calculate platform revenue
 - **Step 3**: cost of lending is such that under the current loan terms L & R, firm profit is maximized

Implications for platform profit

- ▶ Data is not "free"
 - Appropriate data elicitation incentive, or
 - Lower loan demand
- Platform profit depends on data collection policy:
 - Step 1: predict demand and repayment using demand estimates \checkmark
 - Step 2: calculate platform revenue
 - Step 3: cost of lending is such that under the current loan terms L & R,firm profit is maximized $\Rightarrow 11$ cents per dollar originated

Counterfactual: expected revenue per applicant

${\scriptstyle \bullet}$ Collecting QQ and landline decreases platform profit by 10%

	No question	With questions	Difference
delete all	4.88	4.40	-9.9%

roduction oo	Reduced-form Analysis	Model and Estimation	Platform Profit ○○○●

Conclusion

- Individuals attach positive value to privacy
- Data collection could lead to a deadweight loss
- A generalizable methodology for firms and regulators

Is it driven by an incentive to hide negative info.?

• No difference in loan performance or loan grade

$$risk = X'\beta_1 + \sum_{j=1}^5 \gamma_j \ group_j + \varepsilon$$

	grade	pre-approval	loan size	fee	fraction of payments
control	4.12***	0.43^{***}	3797.65***	28.58***	0.85^{***}
	(447.21)	(110.89)	(94.63)	(469.01)	(157.56)
delete all	0.02	-0.01	21.30	0.01	0.00
	(1.50)	(-1.64)	(0.38)	(0.12)	(0.35)
no QQ	-0.00	-0.01**	29.22	-0.09	0.01
	(-0.13)	(-2.14)	(0.52)	(-1.00)	(0.85)
no marriage	-0.02	-0.00	39.15	-0.01	-0.00
	(-1.58)	(-0.72)	(0.69)	(-0.15)	(-0.23)
no landline	0.00	-0.00	16.51	-0.12	0.01
	(0.28)	(-0.18)	(0.29)	(-1.34)	(1.51)
Observations	$73,\!051$	$73,\!051$	$31,\!006$	30,992	$15,\!532$
R^2	0.00	0.00	0.00	0.00	0.00

*Einav, Finkelstein, Cullen (2010) $\rm QJE$

Is it driven by exertion?

• Applicants in the control group are NOT more tired on page 2

∢Go Back

Is it driven by memory?

• Only employed applicants are reluctant to disclose landline

Completion = $\beta_0 + \beta_1$ no landline + ε

	complete page 2				
	employed	unemployed			
no landline	0.02***	-0.01			
	(2.75)	(-1.43)			
Constant	0.53***	0.63***			
	(79.61)	(103.32)			
Observations	$21,\!477$	$20,\!862$			
R^2	0.02	0.01			

An intrinsic preference for privacy

- *Female* and *old* people less willing to disclose personal data
- \blacktriangleright No heterogeneity across income and education
- Consistent with Goldfarb and Tucker (2012), Prince and Wallsten (2020)

 $Completion = \beta_0 \ treatment + \beta_1 X + \beta_2 \ treatment * X + \varepsilon$

Treatment	no	$\mathbf{Q}\mathbf{Q}$	no landline		
	complet	te page 1	complete page 2		
treatment	0.01**	0.01	0.01	0.01	
	(2.56)	(1.42)	(1.50)	(1.35)	
female	0.04^{***}		0.04***		
	(6.90)		(5.79)		
treatment \times female	0.02**		-0.00		
	(2.15)		(-0.28)		
old		-0.02***		-0.07***	
		(-4.22)		(-13.65)	
treatment \times old		0.01*		-0.00	
		(1.93)		(-0.35)	
Observations	71,956	71,956	69,986	69,413	
R^2	0.00	0.00	0.00	0.00	

Privacy Concerns Across Countries

Share of the population concerned about their online privacy

Source: CIGI-IPSOS Survey – Internet Security & Trust, 2019

Share of those distrusting the internet who say online and mobile banking contributes to their distrust

