Peer-to-Peer Lenders versus Banks: Substitutes or Complements?

Huan Tang, HEC Paris

U.S. P2P Market

► FinTech lenders account for 30% of the unsecured installment loan sector in 2016

Research Question

Does P2P lending mainly serve borrowers under-served by banks or those who could have obtained credit from banks?

Research Question

Does P2P lending mainly serve borrowers under-served by banks or those who could have obtained credit from banks?

 Challenge: P2P borrower's access to equivalent bank lending is unobservable

Research Question

Does P2P lending mainly serve borrowers under-served by banks or those who could have obtained credit from banks?

- Challenge: P2P borrower's access to equivalent bank lending is unobservable
- ► Solution: Exogenous (negative) shock to bank credit supply

 → Does the quality of P2P borrower pool improve or decline
 - ⇒ Does the quality of P2P borrower pool improve or decline?

Literature

P2P investors

 Herding (Duarte, Siegel, and Young 2012; Lin, Prabhala and Viswanathan 2012); Lending in relation to borrower characteristics, e.g. appearance, disclosure, and social networks (Kim and Viswanathan 2016; Zhang and Liu 2012)

Literature

- P2P investors
 - Herding (Duarte, Siegel, and Young 2012; Lin, Prabhala and Viswanathan 2012); Lending in relation to borrower characteristics, e.g. appearance, disclosure, and social networks (Kim and Viswanathan 2016; Zhang and Liu 2012)
- ► Information production and efficiency (Franks, Serrano-Velarde, and Sussman 2016; Balyuk 2016; Iyer, Khwaja, Luttmer and Shue 2015)

Literature

P2P investors

- Herding (Duarte, Siegel, and Young 2012; Lin, Prabhala and Viswanathan 2012); Lending in relation to borrower characteristics, e.g. appearance, disclosure, and social networks (Kim and Viswanathan 2016; Zhang and Liu 2012)
- Information production and efficiency (Franks, Serrano-Velarde, and Sussman 2016; Balyuk 2016; Iyer, Khwaja, Luttmer and Shue 2015)
- P2P lending in relation to bank lending
 - FinTech lenders serve risky borrowers in residential lending market (Buchack, Matvos, Piskorski and Seru, 2017WP) and in consumer credit market in Germany and China (De Roure, Pelizzon, and Thakor 2018WP; Liao, Wang, Xiang, and Zhang, 2017WP)
 - U.S. banks lose market share to P2P lenders (Wolfe and Yoo, 2017WP)

Key findings

- ► P2P platforms <u>substitute</u> banks and do not go beyond the customer base of banks
- ▶ P2P platforms complement banks by providing small-size loans

Plan

Introduction

Research Question

Research Design

Assumptions

Conceptual Framework

Identification

Data and Results

Data

Results

Assumptions

- A pool of borrowers with heterogenous quality γ
- Banks and P2P platforms serve all borrowers with sufficient quality:

$$\gamma \geqslant \underline{\gamma}^{\mathit{bank}} \quad \mathit{or} \quad \gamma \geqslant \underline{\gamma}^{\mathit{P2P}}$$

• Of borrowers with access to bank credit and P2P credit, a fraction α choose P2P

Substitutes

Banks and P2P serve the same borrower segment

Banks cut lending to low-quality borrowers

Complements

After Schock
borrowers rejected
by banks

bank borrowers

P2P borrowers

borrower quality

P2P serves low-quality borrowers

Banks cut lending to low-quality borrowers

An intermediate case

P2P serves the same borrower segment as bank & low quality borrowers

Banks cut lending to low-quality borrowers

Predictions

Case I. "Substitute"

(1) Volume: P2P loan volume ↑

Case II. "Complement"

(1) Volume: P2P loan volume ↑

Predictions

Case I. "Substitute"

- (1) Volume: P2P loan volume ↑
- (2) Quantiles: mean and quantiles ↓

Case II. "Complement"

- (1) Volume: P2P loan volume ↑
- (2) Quantiles: mean and quantiles ↑

Predictions

Case I. "Substitute"

- (1) Volume: P2P loan volume ↑
- (2) Quantiles: mean and quantiles ↓
- (3) Frequency: higher frequency at the left tail

Case II. "Complement"

- (1) Volume: P2P loan volume ↑
- (2) Quantiles: mean and quantiles ↑
- (3) Frequency: higher frequency at the right tail

► **Stage 1**: Regulatory shock to bank credit supply

- Stage 1: Regulatory shock to bank credit supply
 - ► FAS 166/167 (2011) \Rightarrow Banks consolidate \$400bn off-B/S assets (of which 80% are revolving loans)
 - Treated banks:
 - Reduce lending to small businesses by 16% (Dou, 2017)
 - Improve quality of credit card loans (Tian and Zhang, 2016)

- Stage 1: Regulatory shock to bank credit supply
 - ► FAS 166/167 (2011) \Rightarrow Banks consolidate \$400bn off-B/S assets (of which 80% are revolving loans)
 - Treated banks:
 - Reduce lending to small businesses by 16% (Dou, 2017)
 - Improve quality of credit card loans (Tian and Zhang, 2016)
 - Exposure to FAS 166/167 varies across counties

- Stage 1: Regulatory shock to bank credit supply
 - ► FAS 166/167 (2011) \Rightarrow Banks consolidate \$400bn off-B/S assets (of which 80% are revolving loans)
 - Treated banks:
 - Reduce lending to small businesses by 16% (Dou, 2017)
 - Improve quality of credit card loans (Tian and Zhang, 2016)
 - Exposure to FAS 166/167 varies across counties
- ▶ **Stage 2**: Effects on P2P borrower distribution

$$\begin{aligned} \textit{Percentile}_{c,t}^{\textit{N}} &= \beta \textit{Treated}_{c} \times \textit{Post}_{t} + \textit{Controls}_{c,t} + \gamma_{c} + \sigma_{t} + \varepsilon_{c,t} \\ & \textit{N} \in \{5, 15, 25, ..., 95\} \\ & \beta > 0 \Rightarrow \textit{complements} \\ & \beta < 0 \Rightarrow \textit{substitutes} \end{aligned} \right\} \text{opposite}$$

Plan

Introduction

Research Question

Research Design

Assumptions

Conceptual Framework

Identification

Data and Results

Data

Results

Data

- ▶ LendingClub data (2009-2012)
 - Loan level: size, borrower location, loan characteristics
 - County level: total volume, distribution of quality and size
 - Borrower quality:
 - (1) FICO score
 - (2) Alternative measure (using FICO, DTI ratio, and employment history)
- FAS 166/167:
 - Call Reports: amount of consolidated assets
 - Summary of Deposits: bank branches

Prediction 1: P2P loan volume

$$y_{c,t} = Treated_c \times \sum_{t=-8}^{t=8} \beta_t D_t + Controls_{c,t} + \gamma_c + \sigma_t + \varepsilon_{c,t}$$

Prediction 1: P2P loan volume - cont'd

	Applio	cations	Originations			
	Amount(\$)	Number(#)	Amount(\$)	Number(#)		
	(1)	(2)	(3)	(4)		
Treated × Post	1107.69***	0.07***	300.54***	0.02***		
	(2.89)	(2.92)	(6.31)	(4.74)		
Controls	Y	Y	Y	Y		
Year FE	Y	Υ	Υ	Υ		
County FE	Υ	Υ	Υ	Υ		
N	11,726	11,726	11,726	11,726		
R^2	0.710	0.756	0.532	0.557		

Per thousand inhabitants in the county:

- Application volume: +\$1,100 (+42%)

- Origination volume: +\$300 (+150%)

Prediction 2: Quantiles of P2P borrower quality

$$\textit{Quantile}_{c,t}^{\textit{N}} = \beta \textit{Treated}_{\textit{c}} \times \textit{Post}_{\textit{t}} + \textit{Controls}_{\textit{c},\textit{t}} + \gamma_{\textit{c}} + \sigma_{\textit{t}} + \varepsilon_{\textit{c},\textit{t}}$$

	Percentile								Mean		
	5th	15th	25th	35th	45th	55th	65th	75th	85th	95th	· IVICAII
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Panel A. FICO score											
$Treated \times Post$	-2.36	-0.32	-0.05	-2.40	-2.15	-8.68***	-7.00**	-8.79**	-6.72*	-1.18	-3.71
	(-0.74)	(-0.10)	(-0.02)	(-0.75)	(-0.68)	(-2.61)	(-2.31)	(-2.38)	(-1.71)	(-0.29)	(-1.56)
Panel B. Predicted borrower quality											
$Treated \! \times \! Post$		-0.02	-0.01	-0.01	-0.01	-0.02	-0.02	-0.02	-0.02	-0.01	-0.02
	(-3.06)	(-1.22)	(-0.40)	(-0.84)	(-0.53)	(-1.54)	(-1.12)	(-1.59)	(-1.35)	(-0.46)	(-1.40)
Controls	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Year FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
County FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
N	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059

Negative coefficients: distribution shifts to the left ("substitute")

Prediction 3: Frequency distribution of borrower quality

$$Frequency_{c,t}^{N} = \beta Treated_c \times Post_t + Controls_{c,t} + \gamma_c + \sigma_t + \varepsilon_{c,t}$$

New borrowers fall in the left tail of the distribution ("substitute")

Prediction 2: Quantiles of loan size

$$Quantile_{c,t}^{N} = \beta Treated_c \times Post_t + Controls_{c,t} + \gamma_c + \sigma_t + \varepsilon_{c,t}$$

	Percentile								Mean			
	5th (1)	15th (2)	25th (3)	35th (4)	45th (5)	55th (6)	65th (7)	75th (8)	85th (9)	95th (10)	(11)	
$Treated \! \times \! Post$	-431.2 (-0.77)	133.1 (0.24)	539.8 (1.00)	315.9 (0.56)	782.4 (1.36)	122.9 (0.21)	860.9 (1.46)	955.8 (1.43)	1562.9** (2.05)	3869.7*** (4.82)	1066.0** (2.04)	
Controls	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	
Year FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	
County FE	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	
N	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059	5,059	

▶ Positive coefficients: distribution shifts to the right ("complement")

Prediction 3: Frequency distribution of loan size

Frequency_{c,t}^N =
$$\beta$$
 Treated_c × Post_t + Controls_{c,t} + γ_c + σ_t + $\varepsilon_{c,t}$,

- New borrowers fall in the right tail of the distribution
- Consistent with the "complement" case

Excluded Alternative Explanations

- ► The deterioration in P2P borrower quality post shock is not driven by:
 - time/location-specific LendingClub pricing policy
 - time/location-specific investor's funding behavior
 - change in demographics or local economic conditions

Conclusion

- P2P platforms substitute banks by serving infra-marginal bank borrowers
- ▶ They also complements banks by providing small loans
- The credit expansion occurs among borrowers with access to bank credit